
Targeting Safety-Related Errors During Software
Requirem.ents Analysis

Robyn R. Lutz*
Jet Propulsion Laboratory

California Institute of !lkchnology
Pasaclena, CA 91109

April 6, 1993

Abst rac t

This paper provides a Safety Checklist for usc during the analysis of software re-
quirements for spacecraft and other safety-critical, embedded systems, The checklist
specifically targets the two most common causes of safety-related software errors: (1)
inadequate interface requirements and (2) discrepancies between the documented re-
quirements and the requirements actually needed for correct functioning of the system.
Use of the checklist to enhance the software-recluirements analysis is shown to reduce
the number of safety-related software errors.

I. Introduction

An earlier study of the causes of safety-related software errors found that those errors identi-
fied as potentially hazardous to a system tencl to be produced by clifferent error mechanisms
than non-safety-related software errors [15]. Safct y-related software errors found cluring the
integration and system testing of two spacecraft arose most commonly from: (1) misun-
derstandings of the software’s interfaces with the rest of the system, and (2) discrepancies
bet ween the documen ted requirements specifications and the recluirements needed for correct
functioning of the system.

A software error is defined to be a software-related discrepancy between a computed,
observed, or measured value or condition ancl the true, specified, or theoretically correct
value or condition [1], A software error is classified as safety-related if, during the standard
error-correction process, the systems safety analyst cletcrmines that the error represents
potentially significant or catastrophic failure effects.

This paper is part of an ongoing effort to improve system safety by directly targeting
the known causes of safety-related software errors during the recluirements phase. l’he main

*Author’s mailing address is Dept. of Computer Science, Iowa State University,
research described in this paper was carried out by the Jet Propulsion Laboratory,
Technology, under a contract with NASA.

1

Ames, IA 50011. The
California Institute of

result of the paper is to proviclc a Safety Checklist for the analysis of software requirements
that focuses specifically on interface rcquircmcnts and robustness requirements,

Since system interface issues such as timing dependencies, storage capacities, noise char-
acteristics, communication links, and expcctcc] operating environments are freclucnt sources
of safety-relatecl software interface errors, they need to be reflcctcd in the software require-
ments specification. Correctly specifying software/ systcm interfaces in complex, cmbeclclcd
systems with software distributed among various harc]warc components, some of which may
bc as-yet uncleterminecl, is difficult.

Similarly, many of the safety-related software CrYOrS involve inadequate soft~vare responses
to extreme conditions or extreme values. Anomalous harclware behavior, unal]ticipatecl
states, invalid data, signal saturation, ancl incorrect triggering of error-recovery responses
are robustness issues which cause errors. By inducting rccluirements for robustness or what
Neumann calls “clefcnsivc clcsign “ in the specifications, many safety-related errors call be
avoiclcd [18].

Jaffe et al. present a set of criteria, clcfinccl in terms of an abstract state machine, to
help find errors in the software requirements specifications of process-control systems [1 1].
They pay particular attention to the behavioral properties of col~trol systems, making their
work an appropriate candidate for error reduction in safety-critical spacecraft systems.

Spacecraft involve ernbccldccl software dist.ributccl on several cliffcrent flight computers.
g’hc spacecraft’s software is safety-critical in that it monitors and controls components that
can be involved in hazardous system bclla,vior [14]. The possibility y of hazardous interactions
among the processes executing on clifferent processors as well as the complexity of the timing
issues across the systcm interfaces demand a rigorous analysis of the recplircments.

‘J’his paper aclapts ancl extcncls the criteria in [1 1] to tile spacecraft cloma.in. ‘1’llc resulting
Safety Checklist is shown to be useful in reclucing safety-rclatecl software errors. lt appears to
be applicable to a variety of application clomains involving safety-critical, embedded software.

The Safety Checklist developed here, Unlilic the criteria presented in [11], is appropri-
ate for a software-development process that may not incluc]c formal specification languages
or finite-state-rnachinc modeling. !lle Safety Chcclilist described below thus is integrated
readily into a wide range of software development environments.

Two specific applications of the Safety Checklist are given in Section IV. These clenlon-
stratc its success at reducing the number of safety-related errors clue to inadequate software
requirements regarding interfaces and robustness.

q’hc overall goal is to recluce safety-related software errors in future systems. The method
is to focus during requirements analysis on those areas (software/system interfaces, failure
modes, timing, boundary conditions ancl values) which in the past have causccl errors that
persisted until integration and system testing. The Safety Ch~clilist has been clcvelopccl as
a tool to aid in this requirements analysis.

II. Related Work

Gray and Thayer [9] identify two key components of any software requirements nlcthodol-
ogy: (1) to aicl in determining the software recluirements and (2) to represent the software
rec{uirements specifications. The Worli described here is focused solely on the first of these

2

two functions.
The paper describes a checklist by which developers can better identify and understand

the requirements necxled for embedded software to interact correctly with the systcm in all
circumstances. This tcchniquc is consistent with a variety of representations of the software
requirements. Regardless of the specification Ianguagc or rnodcl chosen, all rcquircmcnt
methodologies suitable for safety-critical embcclcled software must include some way of con-
fronting the issues identified in the Safety Chcclilist cluring the recluirernents phase. g’his
work is thus integral to any effort to iclcntify ancl eliminate software errors in safety-critical
Systems.

The Safety Checklist described here can be integrated into the recluiremcnts-ana] ysis
process as currently practiced for many application clomains [4]. ‘] ’he checklist format is
one that is widely used ancl with which clevelopms arc comfortable. Formal inspections of
requirement specifications, for example, commonly usc checklists.

‘1’hc utility of the formal inspection of rcquircmcnts documents is wiclcly documented. A
93 of thcnl inspections of software requirc-stucly by Kelly et al., of 203 formal inspection s., -

mcnts documents, reports that a significantly higher density of defects were founcl during
recpircments inspections than in later phases. [1 3]. Work by L)oolan describes the savings
and cluality benefits resulting from the formal inspections of the requirement specifications
of a large (2 million lines of code) package of seismic-processing software [5].

The Safety Checklist presented 1)C1OW is compatible with the software-requirements check-
list used during formal inspections at Jet Propulsion laboratory [6]. Overlap with the fornlal-
inspcction checklists has been eliminated to increase the usefulness of the Safety Checklist.
The focus of the Safety Checklist is narrower than the formal-inspection checklists, since it
con cent rat es on working backwards from common sa.fet y-rela t ed software errors discovered
cluring system testing to their prevention in the recluircmcnts phase. The Safety Checklist is
intencled to extend the requirements analysis in directions that may enhance systcm safety,
not to replace the current checklists, which are broaclcr ancl more comprehensive in scope.

A wide variety of powerful formalisms exists to moclcl and represent the specifications
ancl behavior of systems [21]. In adc]ition, much work has been clone in recent years on formal
specification languages. Timing constraints, which are a major source of software interface
errors, often can be accurately modclccl ancl interactively Chec.lieCl [2, S, 10, 17, 1 9].

l’he capability to verify that the software recluiremcnts for a system satisfy the safety
constraints on that system is a focus of much recent work [7, 12, 14] Similarly, the capability
to analyze specifications by proving theorems regarding them allows verification of the safety-
critical functions of a system [3, 20].

The Safety Checklist provicles a possible bridge mechanism from manual or CASIt anal-
ysis of requirements to the formal specification and verification of safety -relatecl software
requirements. As formulated here, the checklist can provide a first step towards specifying
safety constraints formally. q’hc checklist’s formal basis, as defined by Jaffe et al., allows
the checklist to be written in terms of mathematical predicates in a variety of formal speci-
fication languages. It can then be tested against a formal specification of the requirements.
The Safety Checklist thus can serve as a link between current informal practices ancl future,
formal requirements analyses for safety-critical domains.

3

III. The Safety Checklist

The approach in [11] is to bui]cl a formal, finite-state moclel of the rcquircmcnt specifications
and then to ana.lyzc this moclcl to ensure that its properties match the dcsirccl behavior (e.g.,
clctcrminisrn). They accomplish this by stating criteria (usually formal preclicates) that must
1101cI in the model.

‘J’he following checklist is a translation of the criteria into an informal, natural-language
format. Sometimes the translation is extracted from the text that accompanies the formal
clcscription in [11]. Other times the checlilist itcm is a rewording of a mathematical prcclicatc
in a less-technical vocabulary. Though this rewording inevitably involves some loss of rigor
ancl information, thmc are readily rccapturccl if the ncecl arises by rcfcrcnce to the original
article.

Formatting the requirements-analysis concmns as a checklist avoicls the neecl previously to
have built a model of the recluiremcmts. ‘J’hc ~heclilist thus malics the interface ant] robustness
issues (shown in Sect. IV to bc powerful iclen tificrs of future safet y-rclatccl software errors)
available to a wicler range of software-clcvclopmcnt environments. II] some applications the
checklist may complement more formal approaches to the rccluiremcnts analysis.

‘J’he work in [11] models only the controller in a process-control systcm. The adaptation
of the criteria to spacecraft involves the consiclmation of additional features. Specifically, the
prevalence of concurrent proccsscs (often on clistributecl controllers), of redundant resources,
of external command signals as inputs to the controller, ancl of state changes not visible in the
fccclback information are all features that complicate the spacecraft’s recluiremcnts. l’hcse
features appear to be typical of many complex, embcclclcd systems with timing constraints
ancl safety-critical functions. !l’he worcling of the items in the Safety Checklist tries to take
the associated interface ancl robustnms issues into account for such systems.

Interfaces

1. Is the software’s response to out-o~-rwvgc values specified for every input?

2. Is the software’s response to not mcciving an c~pcctcd input specifiecl? (That is, are
timeouts providccl?) Dots the software specify the length of the timeout, when to start
counting the timeout, ancl the latency of the timeout (the point past which the receipt
of new inputs cannot change the output Lwsult, even if they arrive before tile actual
output)?

3. If input arrives when it shouldn’t, is a response spccifiecl?

4. On a. given input, will the software always follow the same path through the cocle (that
is, is the software’s behavior delerminisiic)?

5. Is each input bounded in time? That is, cloes the specification include the earliest time
at which the input will be acccptec] ancl the latest time at which the data will bc
considered valid (to avoid rnaliing control clecisions basecl on obsolete data)?

4

6.

7.

s.

9.

10.

11.

1~.

13.

14.

15,

16!

Is a minimum ancl maximum arrival rate spccificd for each input (for example, a
capacity limit on interrupts signaling an input)? For each communication path? Are
checks performed in the software to avoid signal saturation?

If interrupts are masked or clisabled, can events he ~ost?

Can any output bc proclucccl faster than it can be usccl (a. bsorbecl) by the interfacing
module? Is overload behavior spccifled?

Is all data output to the buses from the sensors used by the software? If not, it is likely
that some required function has hccn omitted from the specification.

Can input that is received bejom startup, while ofjline, or after shutdown influence
the software’s startup behavior? For example, arc the values of any counters, timers,
or signals retained in software or hardware during shutdown? If so, is the earliest or
most- reccn t value ret ainccl ?

Robustness

In cases where performance degradation is the chosen error response, is the degradation
prcdictab~c (for example, lower accuracy, longer response time)?

Arc there suficient delays incorporated into the error-recovery responses, e.g., to avoid
returning to the normal state too cluickly?

Are jeedback loops (including echoes) spccificcl, where appropriate, to compare the
actual effects of outputs on the system with the prcdictccl effects”?

Are all mocles and moclulcs of the specified software reachable (used in some path
through the code)? If not, the specification may include superfluous items.

If a hazards analysis has been clone, C1OCS every path from a hazardous state (a failure-
modc) lead to a low-risk state?

Arc the inputs identified which, ij not rcccivcd (for example, CIUC to sensor failure), can
lead to a hazardous state or can prevent recovery (single-point failures)?

IV. Results

Two applications of the Safety Chccldist are dcscribcd below. ‘i’he first application looks at
the safet y-relatecl software errors that were actual] y founcl on two spacecraft ancl evaluates
whether use of the checklist during rccluircmcnts analysis COUIC1 have forestalled those errors.
The second application uses the Safety Checklist to analyze part of a requirements documcn t
for safety-critical software.

5

A. Targeting Safety-Related Errors

The efficacy of the Safety Checklist first is ana.lyzccl by examining 192 safety -relatecl software
errors clocumcntecl during integration and system testing of two spacecraft, Voyager and
Galileo. Each of the 192 errors is classified according to which itcm, if any, in the Safety
Checklist addresses the issue causing the error. Table 1 reports the results (SCC Appcnclix
for tables).

Of the 192 errors, 149 of thcm have their causes aclclrcssecl by the chcclclist. This sug-
gests that the checklist cloes, in fact, “ask the right clucstions. ” The usefulness of the Safety
Checklist lies in its use as a prompter for better recognition of recluirements. Asking the
right questions during the rccluirements-analy sis phase clearly is not sufllcient to prcclucle
the introduction of safety-related software errors into the systcm. However, since misunders-
tanding of the interface recluircments and lack of cletailecl recluirements for robustness are
the primary causes of errors, asking the right questions seems to be a necessary condition
for avoiding safety-related software errors in complex systems.

Tab]c 1 shows that the issue most frcclucnt]y involvccl in safety-related software errors
is itcm 15, “noes every path from a hazardous state (a failure nwclc) lead to a low-risk
state?” The prevalence of this issue reflects the fact that many of the safety-relatccl software
errors (20910 on Galileo) involved the onboard autonomous error-recovery software, Some of
the required error-recovery responses incorrectly included or omittecl actions that allowccl
hazardous states to be enterecl or rc-entered. Examples of such actions arc turning off gyros,
switching to backup memory, or clisabling certain software processes in a particular lrlodc.
The additional analysis nccclcd during the rec]uirements phase to answer “No” to itcm 15 of
the checklist might have precluded some of these errors.

The second most common issue producing safety-relatecl software errors is item 12, “Are
there sufficient delays incorporated into the the error-rccovcry responses, e.g., to avoid re-
turning to the normal state too cluickly?” Failure to rc:cognize timing constraints such as the
time required to complete recovery activity (e.g., to point the sensor at the sun), the clelay
required to avoid transient values (e.g., power transients or warm-up delays), or the correct
persistence limit at which to trigger a response are common recluimments inaclecluacim that
cause subsequent interface errors [16].

Both the third and fourth most common errors queried by the checklist involve the arrival
of input. The third most common error’-proclucing issue is itcm 3, “If input arrives when it
shouldn ‘t, is a response specified?” This issue causes safety- relatccl software errors when
essential input is ignored. Often this involves subt]c timing issues across the software/systenl
interfaces (e.g., commands arriving before a process is in the correct mode to receive tllcm,
unexpected duplicate commancls that are mishandlccl, or unforeseen race conditions),

~’he fourth most common issue is item 1, ‘{ls the software’s response to out-of-range
values specified for every input?” This becomes a safety issue when error responses are
erroneously triggered by incorrectly defined ranges or thresho]cls. Additionally, the lack of
software requirements to hand]c large errors (c,g., large pitch clisturbances, unexpected spin
rates) caused several software errors on each spacecraft.

A relatecl robustness issue is the fifth most common error, item 8, “Can any output
bc produced faster than it can be used by the interfacing moclule?” This item, together
with item 6 (arrival rates), checks for erroneous assumptions regarding the possibility of,

6

and appropriate response Lo, data. overflow, signal saturation, a.ncl duplicate commands. IIy
including rccjuircments for overflow protection and out-of-range checks in the specifications,
the subsequent clcsign is more likely to bc robust with regard to boundary conditions ancl
values.

in all, clcvcn of the sixteen items on the Safety Checklist procluccd safety-rclatccl software
errors, Those items not cited arc either adcquatc]y handlccl during tile clevclopment process
with other rncthods (c.g,, “1s all clata usccl?” is chcckccl by various means) or have not been
clocumcntccl as a problcm with these particular systems (e.g., “Is the software’s behavior
clctcrministic?”).

g’he Safety Checklist appears to bc useful for targeting the causes of safety-related soft.-
warc errors. Of the safety-related software errors on the two spacecraft, 7770 have their causes
aclclrcssecl by the Safety Checklist. The goal is to clecrcasc the number of safety -relatccl soft-
~$,arc errors foullcl during testillg of futllrc systems })y en]~ancing the requirements-analysis

process through use of the clleck]ist.

B. Analyzing Software Requirements

11’hc Safety Checklist also was usccl to analyze part of a clraft version of a Software Rc-
quircrncnts Document for a spacecraft currently being clcvclopccl. The portion chosen for
analysis was the requirements specifications for data collection by the remote (clistributccl)
cnginccring subsystems (e.g., power, propulsion, science and radio instruments).

‘1’his portion of the software specifications was chosen because each mmotc subsystem has
many interfaces (both perioclic ant] apcrioclic) with other subsystems ancl because the safety -
critical, error-recovery processes clepcncl on the results of the clata collection. l’hc purpose
of applying the Safety Checklist to these specifications]vas to evaluate the uscfu]ncss ancl
ea.sc-of-use of the checklist, not the correctness or completeness of what Ivas proviclccl as only
a prclimi nary requircmen ts cl.ocumen t.

The clata collection functions as follows. Each remote engineering subsystem receives
various inputs over a sharecl bus from the central control computer as WC1l as from other
subsystems, performs certain actions in response to these inputs, ancl places variolls outputs
(primarily engineering data) on a bus. Engineering clata is gathcrccl by each remote engi-
neering subsystem and stored in its BUS Interface LJnit)s memory until the data is packagecl
and output on the bus to the central control processor. Some of the data also is cxtractccl
and sent to other subsystems. In aclclition, data recluirccl by the error-recovery processes are
extracted and output separately.

l’able 2 (see Appcnclix) S11OWS the results of applying the Safety Checklist to the software
requirements specifications for the remote engineering clata collection. Seven of the sixteen
items in the chcck]ist are acldressccl in the preliminary software recluiremcnts document.
Three of the sixteen items arc explicitly deferrecl (since error-recovery responses and interrupt
behavior are still being clcfined). The remaining six of the sixteen items prompt additional
questions involving the analysis of the requirements.

The six items prompting additional recluircments analysis do not necessarily neecl further
specification in the document. Instead, they raise cluestions about possibly vulnerable areas
(’(what if’s”) and possibly hazarc]ous circumstances. The questions raised by the checklist
are uscfu] in focusing the recluirements-analy sis process on the interface and robustness issues

that have been shown to cause safety -rclatecl softwarecrrors in other complex, embeclclecl
systems.

I’or example, inaccorclance with thechccklist, thcrcis arequiremcnt specificd for data
freshness. IIowevcr, thetinlestanlp in thchcaclcrof therclevant clata item recorcls only the
current time, making it uncertain whether obsolete clata coulcl be identifiecl, The concern
is not at this point with how the obsolete clata could bc identiflccl, but with whether a
requirement to iclcntify obsolete data is in conflict with other requirements regarding header
information, The checklist also allowccl iclcntiflcation of possible race conditions, of possible
starvation of low-priority data transfers, ancl of inputs which if not rcccivccl might result in
hazardous states (e.g., notification that error-recovery is ullclcrway).

Two extensions to the checklist were suggested by the application of the Safety C!hccklist
to the software requirements specification.

1. J!)aia consistency When multiple copies of the same clata items are kept, the possibil-
ity exists that the copies may have different values at any point in time, This inconsist.cncy
can occur through asynchronous update or through data. corruption (e.g., as clata is trans-
ferred across the bus or during a power-on reset response). ‘1’his issue has significant safety
consequences since error recovery often involves the management of redundant resources.
This leads to the following extension to the Safety Checklist:
“Am checks jor consistent data perjormd before co Ittrol decisions are made based on thcii.
data?”

2. Generic structures. An important aspect of clcfensive clesign is that, as much as pos-
sible, moclules ancl data objects should bc generic, si]nilar in format a.ncl in U S C. Special
cases and exceptions increase the number of states ancl the opportunities for clesign errors,
especially c]uring changes. In particular, restricting the number of possible hazardous states
makes the validation of safety constraints more feasible. This leacls to the following additi-
onal item for the checklist:
“Are generic structures used whenever appropriai e to restrict. the number of possible haz-
ardous modes and states?”

V. Conclusion

The Safety Checklist has been shown to be useful in analyzing software recluircments, particu-
larly with regard to interfaces and robustness. Dy targeting those features which have proven
to bc the most common causes of safety-rclatccl software errors, the chccl;list contributes to
a safer system. It aicls in analyzing failure modes, in uncovering hiclden assumptions ancl
misunderstandings, and in identifying potential areas of vulnerability,

The Safety Checklist focuses extra attention on historically troublesome aspects of safety-
critical, embedded software (timing depcnclcncies, triggers for error-recovery responses, the
handling of overload and saturation, the use of obsolete clata for control decisions) without
causing overspecification of well-unclcrstoocl or low-risk requirements. ‘l’he checlilist thus
allows the depth of the recluirements analysis to be ta.ilorecl to the level of risk (technical or
historical) associated with a component,

Because the checklist emphasizes requirements for software/systern interfaces and robust

s

responses to anomalous circumstances, many of the items it identifies are system hazarcls.
It thus can be USCCI as a first step towards specifying and checking safety constraints, either
informally or formally. As dcvelopccl here, the chcclilist can bc rcaclily ;ncorporatec] into
the requirements analysis, e.g., as a supplement to the formal inspection of rcquirenlents
spcc; ficat;ons.

IMture work in this area will bc clircctccl at identifying how the use of the Safety Checklist
during the requirements phase can be used to predict which factors in a. particular system
arc likely to cause subsequent safety-relatcc] software errors.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[s]

[9]

[10]

ANSI/IEEE Standard Glossary of Software Engincming Terminology. Ncw York:
IEEE, 1983.

Proceedings oj the Berkeley Workshop on T’cmporal 071cl Real- Time Spccijlcaiion, Eels.
P. H. Ladkin and F, 11, Vogt. 13crkelcy, CA: International Computer Science Institute,
1990, TR-90-060.

J. Cullyer, “Safety-critical Control Systclns,>’ Computing and Control Engineering

Journal, Vol. 2, No. 5, Scpt 1991, pp. 202-210.

A. M. Davis, Sojtware Requirements,)1))alysis cmd Specification. Englmvoocl Clifls,
N. J.: I’renticc Hall, 1990.

E. P. Doolan, “13xpcricnce with Fagan’s Inspection hfethoc],” Sojlwarc--l’racl ice and
llrpcricncc, Vol. 22(2), l?cb 1992, pp. 1 ?3- 1 S2.

Sojtware Development Formal Inspections C:ourse . Rev. G, %pt, 1990, Software Procl-
uct Assurance, Sect. 522, Jet Propulsion l,a.boratory.

ht. K. Franklin ancl A. Gabrelian, “A g’rallsforlllatiotlal h4cthod for Verifying Safety
Properties k Real-’llme Systems, “ in Proeccdings oj /}) e Real- l’ime Systems Sgmpo -
sium, 1989, pp. 112 –123.

C. Ghezzi et al., ‘LA Unificcl High-I,cvel Petri Net Formalism for Time-Critical Sys-
tems,” IEEE Transactions on Software En~in cering, Vol. 17, No, 2, Feb 1991, pp.
160--172.

E. M. Gray and R. H. Thaycr, “Rccluircments, “ in Aerospace Sojtzmzrc Engineering, A
Collection oj C’onccpi.s. 13cl, C, Anclcrson ancl h4. Dorfman. Washington: AIAA, 1991,
pp. S9-121.

T. A. Henziger, Z. Manna, and A. Pnueli,’’q’ernporal Proof h4ethodologies for Real-
Tirne Systems, “ in Proceedings oj the 18111 A CM Symposium on Principles oj” Program-
ming Languages, 1991, pp. 353-366.

9

,

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[~()]

[~]]

M. S. Jaffe, et al., “Software Requirements Analysis for Real-1 ”’ime Process-Control
Systems,” lL’E17 Transactions on Soft u)are Engineering, Vol. 17, No. 3, March 1991,
pp. 241-258,

F. Jahanian and A. K.-I,. h[ok, “%fcty Analysis of Timing Properties in Real-Time
Systems,” IEEE Transactions on Software Engineering, Vol. SE-12, Scpt 1986, pp.
890-904.

J. Kelly, J. S. Sherif, ancl J. Hops, “An Analysis of Defect Densities Founcl During
Software Inspections,” Journal of Systems Software, Vol. 17, 1992, pp. 111-117.

N. G. I,eveson, “Software Safety in Embecldecl Computer Systems,” Conznzunicaiions
of the ACM, Vol. 34, h~o. 2, Feb 1991, pp. 35--46.

R. Lutz, “Analyzing Software Rccluircments Errors in Safety-Critical, Ernbedclecl Sys-
tems,” Proceedings of the IEl?E Int crni(lional Symposium on Requirements Lkgin CCP
ing, Jan 1993, pp. 126-133.

R.. I,utz and J. S. K. Wong, “Detecting lJnsafc Error R.ccovcry Scheclulcs,” I1lL’11
\’O], 1S, No. S, Aug 1992, pp. 7’19-760.Transactions on Sofiware Engineering , ~

N .],ynch a n d 11, A t t i y a , “[Jsings h~appings to Prove Timing Properties,”
iWIT/lX’S/TM-~ 12, b, lkC 1989.

P. G. Neumann, “The Collll)llter-l{elatccl Risk of the Year: Weak Links ancl Corre-
lated Events, “ in Proceedings of the ,Sirfl) .z1 nn ual L’o)ljerenee on L’onzpuier Assurance.
NIST/IEEE, 1991, pp. 5-S.

R. R. Razouk ancl M. hfl. Gorlick, ‘(A Real-rl’imc Interval I,ogic for Reasoning About
Executions of Real-Time Programs,“ in SIG090F7’ ’89 Third Symposiu7n on Software
Testing, Analysis and Verification, Dec 1989, pp. 10--19.

J. Rushby and F. von Henlie, “Formal Verification of Algorithms for Critical Systems,”
in SIGSOFT ’91 Software for (3’iiical Systems, Dec 1991, pp. 1–15.

J. M. Wing, “A Specifier’s lntrocluction to Formal hlethocls,” Computer, Vol. 23, Scpt
1990, pp. S-26.

10

Appendix

‘l’able 1. !i’argcting Safety-liclatccl Software Exors With the Safety Checklist
Checklist Item Voyager Galileo Total

1. Out-of-range values 5 11 16
2. Timeout 2 5 7
3. Input arrives when it shoulcln’~ 10 7 17

4. Deterministic o 0 0
5. Data age 1 7 8

6. Arrival rate 5 3 8
7. Lost events 5 5 10

S. Overload response 9 4 13

9. All data used o 0 0
10. Startup/OfIline/Shutdown 6 0 6
11. Degraclation predictable 1 0 1
12. Delays in error responses G 17 23

13. Feedback loops o 0 0
14. All modes reachable o 0 0
]5. Paths lead to low-risk state 5 29 34
16. Inputs Received before start o 6 6
Tota l Aclclressecl by Safety Checklist: – 5,5 g),l

— 149

-— — —..

Table 2. AP~lvin~ the Safety Checklist tO a Rwlirenlents Speci f ica t ion “
Checklist Item “ - “ - ‘Resolved Questions Remain Future Specification
1.. Out-of-range values

— —.-
X

2. Timeout x
3. Input arrives when it shouldn’t x
‘~. Deterministic x
5. Data age x
6. Arrival rate x
7. Lost events x
8. Overload response x
9. All data used x
10. Startup /Oflline/Shutclown x
11. Degradation predictable x
12, Delays in error responses x
13. Feedback loops x
14. All modes reachable x
15. Paths lead to low-risk state x
16, Inputs Received before start x
Totals:

—.
7 6 3 —:

11

